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Abstract

The biologists have done their jobs. We know the life cycles and habitat requirements
of endangered western fishes. . . [A] successful management program could be devised
and implemented for the Grand Canyon region. [But, c]urrent politics stand in the
way, just as surely as politics of the 1960s aided and abetted our efforts to learn
enough to save this fauna. - W. L. Minckley 1991

Development of water resources in the Colorado River Basin over the past century has changed
a dynamic, seasonal river into a highly managed system. Conversion of lentic habitat to reservoirs
has altered seasonality of flow, temperature, and turbidity. These changes have played out in the
fish fauna, where native fish species have declined and non-natives have increased. Relative to the
past, the key aspect of the new environment is competition and predation, especially at juvenile
stages, which is likely mediated by more stable flow regimes and increased resource limitation
from reduced floodplain-river interactions. A dataset (SONFISHES) assembled by W. L. Minckley
and covering 150 years of fish occurrence in the Lower Colorado River (below Glen Canyon Dam)
has enabled characterization of patterns in extirpations and range contractions among native fishes
and expansions among non-native fishes. Several studies have combined these data with measures
of extinction risk to explain how range fragmentation and species traits correlate with observed
or threatened extinctions in native species. Another study analyzed range shifts within a strategy-
space of potential fish life histories (originally introduced by K. O. Winemiller and K. A. Rose) to
understand how human activity has created and removed ecological niches. Together, these studies
support the view that alterations to the river environment have caused observed changes. Although
there is a convincing link between changes in the fish biota and the modified environment, I argue
that additional work is needed to make this knowledge useful for predicting responses to further
modification. In particular, to predict future changes in fish biodiversity requires a model that
quantitatively relates alterations in environmental factors to persistence in the strategy-space of
fish life histories. Only with such a model can we know the expected magnitude of change in
fish fauna for a projected change in environmental conditions. Unfortunately, even without such
a model we can qualitatively predict the fates of threatened “big-river” fishes in the absence of
political will to intervene. As the quotation above suggests, this will has been lacking since at least
the 1990s.
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Goals of the paper

Reviewing changes to the fish fauna of the Lower Colorado Basin over the last 150 years
through the ecological lenses of niche and life history theory, I explain how these views of the data
not only support the view that alterations to the river environment have caused observed changes,
but suggest mechanisms. I argue that despite this progress more work is needed to make quantita-
tive predictions of responses to further modification (either intentional or associated with climate
change). In particular, we must develop models that quantitatively relate environmental variability
to ability of species to persist in life-history space. Such models would relate documented shifts
in fish fauna to changes in environmental variables, providing essential estimates of effect size and
giving managers a chance to predict responses.

Literature synthesis

I briefly discuss changes to the abiotic environment and fish biota of Lower Colorado over the
past 150 years. Our understanding of changes to the fish fauna over this timescale owes mostly
to the work of the late W. L. Minckley, who worked tirelessly to compile an occurrence dataset
spanning these years (the SONFISHES dataset; Fagan et al. 2002). Finally, I summarize changes
in the fish biota within the context of ecological niche and life-history theory to yield insights into
ecological aspects of the invasion and extirpations in fishes of the Lower Colorado Basin.

The Lower Basin of the Colorado River, defined as the portion below Glen Canyon Dam, is im-
peded by six major dams before reaching the Gulf of California. These dams have resulted in major
alterations to sediment supply, temperature, and flow within the mainstem Colorado (Gloss et al.
2005). Downstream of Glen Canyon Dam, two tributaries (the Paria and Little Colorado Rivers)
contribute the vast majority of present day fine sediments (greater than 90% Cross, Topping), but
these inputs represent a 84% decrease relative to pre-dam conditions (Topping et al. 2000). With
the exception of experimental floods, timing of discharge from Glen Canyon Dam is now depen-
dent on irrigation and electricity demand (Cross et al. 2013; Topping et al. 2003). Together, these
changes have vastly altered patterns of natural variability (e.g., in Figure 1 the hydrograph below
Lee’s Ferry, AZ the 1964 closure of Glen Canyon Dam is clearly visible).

Resulting alterations to seasonality of flow, temperature, and turbidity within lentic habitats
have played out in the fish communities, where native fish species have declined and non-natives
have increased. Changes to the variability in the abioitic environment have consequences for a
native fish biotia adapted to such patterns (Lytle & Poff 2004). Further, although non-native taxa
had begun to establish and spread long before establishment of major dams (Minckley 1991) that
have essentially removed disturbances at seasonal (e.g., flooding due to spring run-off) timescales
and substantially reduced variability due at finer timescales (e.g., due to weather systems). Even in
river canyons subject to irrigation and power-generating flows, changes create stable habitats that
can be resource-limited. For example, Cross et al. (2013) characterized food webs along the Lower
Colorado from Glen Canyon Dam to Lake Mead, finding evidence for food limitation except for
near the mouths of large tributaries. If food limitation in these habitats is a phenomenon of the
modern Colorado, it may stem from reduced floodplain-river interactions (Olden et al. 2006).
Reduced lentic habitat and altered variability combined with competition and predation from non-
natives has imperiled the fish fauna of the Lower Colorado (Minckley 1991).



Figure 1: Discharge measured by USGS Gauge at Lee’s
ferry. Boxed regions relate to both dam and biota: pre-
dam and pre-breakpoint (A), post-dam and pre-breakpoint
(B), post-dam and post-breakpoint (B). See Conclusions
for discussion. (Data from waterdata.usgs.gov, plot mod-
ified from same source.)

The fish fauna of the Colorado is depauper-
ate but special. It consists of just 32 indige-
nous species in 5 families (Minckley 1991).
In particular, the “big-river” fishes of fami-
lies Cyprinidae (minnows) and Catostomidae
(suckers) inhabiting the mainstem share several
unique features: large body sizes, very long
lives, leathery skin essentially without scales,
and streamlined body plans—often featuring
tiny heads and large keels or pre-dorsal humps
(Minckley 1991). Of these, Cyprinids are the
most endangered in the Colorado: two (Round-
tail chub Gila robusta and Colorado squawfish
Ptychocheilus lucius) are extirpated from the
Lower Basin, with another (Bonytail Gila el-
egans) restricted to reservoirs of Lake Mohave
and Havasu (Minckley 1991; Minckley et al.
2003). To understand the patterns of extirpa-
tions in these and other native fishes, and the

expansion of non-natives, we turn to a 150-year occurrence dataset compiled by W. L. Minckley
and coworkers.

The SONFISHES database, extirpation, and expansion
The SONFISHES database describes distributions on native and non-native species throughout

the Sonoran Desert ecoregion over 160 years of museum collections, peer-reviewed literature, and
technical reports (“gray” literature) (Fagan et al. 2002). The data comprise occurrence locations
referenced in space and time: 19,396 for native species (n=28) and 16,339 for non-native species
(n=49) (Unmack 2002). As seen in Figure 2, spatial coverage extends to portions of five states and
northwest Mexico, totaling 25,970 km of reach draining 331,500 km2 (Fagan et al. 2002)

The SONFISHES database has been used to characterize pattern of expansion in non-natives
and range contraction in natives (Fagan et al. 2002; Olden & Poff 2005). Fagan et al. (2002)
examined fragmentation and extinction risk in native fishes, breaking the occurrence dataset into
pre- and post-1980 periods. After developing a scale-independent measure of rarity, these work-
ers found that fragmentation before 1980 predicted extinction risk independently of the number
of occurrences. Species with the most fragmented historical range were five times more likely to
have suffered local extirpations, a finding which was insensitive to the 1980 breakpoint (Fagan
et al. 2005). Examining changes in distribution of both non-native and native fishes, Olden & Poff
(2005) determined that rates of spread for non-natives introduced after 1950 were slower than those
introduced earlier, consistent with reduced human-mediated dispersal. Further, a strong correla-
tion between early declines and later imperilment in natives suggested that proactive conservation
approaches are necessary for these taxa (Olden & Poff 2005). More recent work has collated the
observed distributional changes with data on species traits and analyzed resulting patterns in the
context of ecological theory.



Figure 2: Spatial coverage of of the SONFISHES database
in the Lower Colorado River Basin. The inset shows ma-
jor drainages and black dots are occurrence records (re-
produced from Olden & Poff (2005)) used without permis-
sion).

Changes to fish fauna in life-history and niche
space

Viewing patterns of extirpations and inva-
sions through the lenses of ecological life his-
tory and niche theories may help to (1) under-
stand species invasions more generally, and (2)
infer mechanism for observed patterns.

In ecology and evolution,“life history” refers
to traits such as age-at-maturity and age-specific
fecundity or survival (Roff 2002). Thus, life-
history theory is the study of how evolutionary
and ecological factors affect these traits. Gen-
erally, the theory uses mathematical analysis to
ask questions like, “how does the age at first
reproduction affect individual fitness and pop-
ulation growth?” A basic notion in life-history
theory is that tradeoffs between traits (e.g., egg

size vs. number) define level sets of a fitness surface; locations in this multi-dimensional trait
space are sometimes termed “life-history strategies”. For fish, K. O. Winemiller and K. A. Rose
introduced a three-endpoint life-history strategy space (hereafter the “W–R” model) (Winemiller
1992; Winemiller & Rose 1992). This theory, illustrated in Figure 3, envisions strategies selected
for based largely on the predictability and variability of resources (Winemiller 2005).

Figure 3: The Winemiller-Rose triangular model for fish life
history envisions strategies defined by optimization of genera-
tion time, juvenile survivorship or age-specific fecundity relative
to the predictability and variability of the environment and re-
sources (reproduced from Winemiller (2005); used without per-
mission).

Niche theory posits that species have
fundamental environmental requirements.
The “fundamental niche”, where persis-
tence is possible, is the subspace of
a multi-dimensional environmental space
where abiotic aspects of these require-
ments are met. Theory draws a distinc-
tion between the fundamental and “real-
ized” niches, the latter is where the species
actually occurs. The difference between
the realized and fundamental niches of
species is explained by limited dispersal
and, more importantly, biotic interactions
of competition and predation. As in life-
history theory, the fundamental and real-
ized niches are also envisioned to depend
on traits—not only life-history but morphology, behavior, physiology, and trophic position. In
relating these ideas to species invasions, a distinction has been made between factors based on
how they affect the niche of potential invaders: “biotic resistance” operates on the realized niche,
whereas “environmental resistance” affects the fundamental niche. Areas of where there is little
resistance of either type have been termed “niche opportunities” (Shea & Chesson 2002).

In an effort to understand changes to the fish fauna of the Lower Colorado Basin through
the context of life-history and niche theory, Olden et al. (2006) associated patterns of extirpation



and invasion from the SONFISHES dataset with a laboriously-compiled database of life-history,
morphological, behavioral, physiological, and trophic traits. This trait-based approach provides
useful context and potential mechanism for the findings mentioned above that range fragmentation
influences extirpation risk (i.e., Fagan et al. 2002, 2005). In particular, in the Lower Colorado,
extinction risk and fragmentation are both associated with a synergistic suite of “slow” life history
traits (large body size, long lifespan, late age-at-maturity), low parental care, and specialized feed-
ing (Olden et al. 2008). Although these traits are related to population growth in general, there are
also weaker context-dependent indications that traits directly related to weak dispersal (i.e., high
“swim factor”) are associated with higher extinction risk providing a more direct mechanism for
fragmentation.

Figure 4: Distributional decline in native species (A,C) and spread in non-native species (B,D) plotted against axes con-
sistent with the Winemiller-Rose life-history strategy space (A,B) with “opportunistic”, “periodic”, and “equilibrium”
end-point strategies labeled. Point sizes give percentage distributional decline (A) for natives and rate of expansion in
km/year (B) for non-natives (B). Also plotted against overall niche overlap (C,D). Open circles and dashed lines rep-
resent species that prefer slow-moving water, while closed circles and solid lines represent those preferring moderate
or fast water (Modified from Olden et al. (2006) used without permission; see that paper for details of methods.)

Associating patterns of extirpation and expansion with species traits shows how human modi-
fication of the environment has created and removed ecological niches, and exemplifies how both
biotic interactions and environmental conditions may mediate species invasions. In particular, the
analysis by (Olden et al. 2006) of patterns within the W–R model revealed (Figure 4A-B) that



rapidly spreading invasives lie along a line connecting the opportunistic and equilibrium end-point
strategies. Further, rapidly declining native species either overlap with non-natives along this line,
or display a periodic strategy likely not adapted to modified environments.

Olden et al. (2006) also examined the potential for context-dependence in biotic resistance.
This involved computing the total niche overlap (i.e., all traits) with non-natives (for native species)
or natives (for non-natives) and separately examining species that prefer lentic (fast and medium
moving water) from those preferring lotic (slow moving water) habitats more prevalent in the mod-
ern basin. Figure 4C-D illustrates the results, which show that expansion of non-natives declines
with overlap of the native species pool in lentic but not lotic environments indicating biotic re-
sistance in habitats more like the historic river. Thus, rapidly expanding non-native species take
advantage of niche opportunities that are either created by human modification (i.e., lotic habitats),
or inherent gaps in the niche space occupied by the depauperate native fauna within remaining
lentic habitats.

Olden et al. (2006) demonstrates utility of trait-based approaches in ecology of invasions and
conservation biology providing support for the niche-opportunity hypothesis both generally and
within the context of the W–R model. These findings exemplify how both modified environmental
conditions and biotic interactions mediate species invasions and support the view that alterations to
the river environment have caused observed changes in species distribution. They also suggest two
distinct patterns for extirpations of native fauna and appearance of invasives. In pattern 1, native
fishes inhabiting the periodic end-point of the W–R model have life histories that are disadvanta-
geous due to changes to the scale and predictability of environmental variation. In pattern 2, along
the axis between opportunistic and equilibrium end-points non-native fishes have increased and
native fishes have also declined. Although this work clearly suggests that pattern 1 is explained
by changes in the abiotic environment, the extent to which pattern 2 owes to abiotic versus biotic
factors (competition and predation between natives and non-natives) is unclear. Further, the anal-
ysis summarized here does not quantify changes in the river environment and so has no predictive
utility for forecasting effects of future abiotic changes.

Conclusions

In the Lower Colorado Basin, native fishes, particularly those adapted to the variable pre-dam
environment, have declined, and non-native species have increased (Minckley 1991; Fagan et al.
2002; Olden et al. 2006, 2008) Further development in the basin is constrained not only by actual
water resources, but by legislative constraints imposed on human uses by the need to manage for
threatened and endangered species. Faced with a changing climate, and rising demand for water
resources, there is urgent need to understand effects of planned and unplanned changes both on
species already at risk and those that are currently common. Although the conclusions of Olden
et al. (2006), i.e., patterns 1 and 2, are relatively clear, to predict we need to understand quanti-
tatively the strength of relationships between changes in abiotic environments and persistence of
fishes within life history space.

Thus we require a model that quantitatively relates alterations in environmental factors to per-
sistence in the strategy-space of fish life histories. I propose a three step approach to accomplish
this elaboration on the ecological story of Lower Colorado Fishes: (1) develop a model based on
the theory of life histories in variable environments that quantitatively relates environmental vari-
ation to persistence in life history space, (2) determine the change in variability of environmental



covariates, and (3) determine how much mortality variation needs to be due to the covariates to
explain observed timescales of changes in range in life history space (i.e., Olden et al. 2006) based
on the model from 1.

It would seem that the W–R model accomplishes step 1. In fact, while it provides intuition
(which may be empirically supported at large biogeographic scales; see Mims & Olden 2012), it
does not quantitatively incorporate variability in environments into persistence in life history space
(Winemiller 1992; Winemiller & Rose 1992; Winemiller 2005). On the other hand, a large body of
work in general theoretical biology (e.g., Tuljapurkar 1990; Orzack & Tuljapurkar 1989) has made
such quantitative connections (much of it summarized in Caswell 2001). Only recently have gen-
eral models in this field combined multiple dimensions of traits consistent with Winemiller (1992)
with inputs based on environmental variability. For example, Tuljapurkar et al. (2009) combines
generation time, a measure of iteroparity (demographic dispersion), and a measure of competitive
ability (within-year variances in vital rates) in the context of environment-driven between-year
variation. Although this work is in early stages, there is evidence of multiple strategies consis-
tent both with the ideas of Winemiller (1992), and with earlier work on life histories in variable
environments (Tuljapurkar 1990; Orzack & Tuljapurkar 1989).

So, while the first step is feasible, the second requires data on patterns of variability in envi-
ronmental covariates over the past 150 years. Ideally, one would collate data on hydrologic regime
before during and after extirpation, respectively A-C in 1. Unfortunately, stream gauges with long
records are rare, and especially so in the Southwest USA (Poff et al. 2007; Mims & Olden 2012).
Moreover, there is no source of hydraulic data that can match the spatial scope of the SONFISHES
occurrence data. Thus, it will be necessary to make assumptions based on stream type which may
weaken the strength of overall conclusions. Despite this issue, I argue strongly that this type of
quantitative work is necessary for further ecological understanding. Only with such a model can
we know the expected magnitude of change in fauna for a projected change in environmental con-
ditions (under pattern 1 or 2), or hope to tease apart the relative strength of mechanisms in pattern
2.

Finally, I caution that the research proposed is not a necessary first step for conservation of
native fishes in the Lower Basin. Rather, as suggested by Minckley (1991), it is well understood
that non-natives have major effects on native fishes. Yet, while this understanding has led to
massive investment in predator control, it tragically has not resulted in understanding of interaction
strength between native and non-native fishes (Mueller 2005). Thus, we essentially waste time
and money on a strategy of unknown efficacy. Policymakers, managers, and ultimately citizens
must commit to scientifically evaluating management strategies, whether current or future. The
large scale investment necessary to continue predator control militates against much budget for
research. On the other hand, Minckley et al. (2003) put forward a plan for restoration of small-
scale off-channel habitats, and protection of these habitats from non-native fishes, which would
simultaneously allow for research on the strength of interactions with non-native fishes. This plan,
however, has languished (Mueller 2005). In my opinion, the first step should be to implement
Minckley’s plan. After all, the biologists have done their jobs (Minckley 1991).
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